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Abstract: Berenger introduced the concept of a termi-
nating boundary known as perfectly matched layer (PML),
in which electromagnetic waves are absorbed without re-
flection, irrespective of frequency and angle of incidence
of the incoming wave. This absorbing boundary condition
promises to be very attractive for microwave CAD appli-
cations involving complex geometries such as high-density
microwave integrated circuits and electronic packages, be-
cause the computational domain can be significantly re-
duced. This paper presents, for the first time, a rigorous
analysis of the stability of the PML boundary condition ap-
plied to finite-difference time-domain (FDTD) simulation.
We discuss the FDTD simulation of a high-Q microstrip fil-
ter to show improvement in computational efficiency with-
out any manifestation of instability.

1. Introduction

Berenger [1] introduced the concept of a perfectly
matched layer (PML) to absorb without reflection incident
electromagnetic (EM) waves of arbitrary polarization, inci-
dence angle and frequency, at the walls of a computational
mesh. Berenger showed that such a layer can be designed
for a specified bound on the reflection coefficient at the
boundary, and applied the PML boundary condition to the
finite-difference time-domain (FDTD) simulation of two-
dimensional EM wave interaction in an open region. The
PML concept has been discussed further in [2], and applied
to the FDTD analysis of microstrip circuits in [3]. Mit-
tra and Pekel [2] consider the time-harmonic representation
of the fields in a PML medium and show that these fields
involve distributed dependent sources. This observation
raises the question of temporal stability of the difference
approximations of these fields, particularly in view of the
non-Maxwellian nature of the split-field representation in
Berenger’s original formulation.

Berenger’s PML absorbing boundary condition (ABC)
promises to be very attractive for EM simulations involving
complex geometries such as high-density microwave inte-
grated circuits and electronic packages, because the compu-
tational domain can be significantly reduced. This paper dis-

0-7803-3246-6/96/$5.00 © TEEE

581

cusses, for the first time, the stability of the finite difference
approximations for the EM field in a computational mesh
terminated by Berenger’s PML ABC, and thus, provides
valuable insight into its application to microwave circuit
analysis. In recent years, the FDTD method is being used
competitively with other EM simulation methods, partly
because of the advances in computer technology and the
improvement in accuracy caused by ABCs such as superab-
sorption [4]. However, all the ABCs prior to Berenger’s had
limitations such as numerical dispersion and restriction to
normal incidence, which precluded their general applicabil-
ity toward enhancement in accuracy of the FDTD algorithm.
The advent of an ABC with residual reflection of the order
of -80 dB or less indicates that a comprehensive, yet accu-
rate, full-wave CAD tool, with practically no limitation on
the complexity of geometry and physical description of the
circuit or scatterer, is at hand.

The stability analysis presented in this paper follows
the classical von Neumann method for the stability of par-
tial differential equations. The eigenmode structure of the
difference approximations of Berenger’s split-field repre-
sentation in a PML is utilized to derive a transcendental
equation for the stability (or amplification) factor. The tran-
scendental equation is solved numerically and stability of
the time-domain difference equations for the EM field in
a PML medium is established rigorously in terms of the
computational parameters such as angle of incidence, fre-
quency and layer conductivity. The stability of the EM field
approximations at a boundary between a PML medium and
free space is also investigated. The PML ABC is applied
to the FDTD analysis of a microstrip filter which involves
fairly long simulation times, and it is shown that an ac-
curate (in comparison with measurements), stable solution
can be obtained by placing the PML boundary only a few
cells away from the element. Thus, the filter simulation also
demonstrates the computational savings made possible by
Berenger’s PML.
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2. Stability Analysis
2.1. PML Medium

The transverse electric (TE) field in a two-dimensional
PML medium can be obtained from [1]
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where the couples (0, 0y) and (07, o) denote anisotropic
electric and magnetic conductivities, respectively, of the
PML medium. The splitting of the longitudinal magnetic
field into two components as embodied in (1) — (4) is an
important starting point of Berenger’s formulation. The
stability of this system of equations is addressed next.

The equations above are central differenced in space
and exponentially differenced in time [5] to obtain the set
of difference equations given by
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The eigenmode of this system is given by damped wave-like
solutions of the form
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where R, = o, and 3y, = B,. The attenuation and phase
constants in the PML medium are given as
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where w is the angular frequency, ¢ is the speed of light
in free space and ¢ is the angle of incidence. The vector
on the right-hand side of eq. (9) is a constant eigenvector,
independent of time and space, and £ = £(yz,7y) is a
complex number known as the amplification factor [6]. For
a stable solution, the magnitude of this factor must be
less than unity. After substituting the eigenvector equation
into the difference equations, the characteristic system given
by
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The last equality in (14) and (15) follows from the matching
condition for the PML, given by [1]
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The characteristic system in (12) will have a solution

for the eigenvector only if the determinant of the matrix is
zero. Therefore,
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When the electric and magnetic conductivities vanish, (18)
correctly reduces to the characteristic determinant of central
differenced equations for the field in free space:
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2.2. PML Free Space Boundary

A PML adjacent to free space has no conductivity com-
ponent tangential to the free space interface [1]. Assuming
an interface at * = x; = iAx, the characteristic system
can be obtained from (12) by replacing 0y — 0, p, /oy —

At/eg, sy — j{ﬂ%ﬁﬁ , 7 = +v/—1, and changing the

third and fourth entries in the second row to
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The node for E,, falls at the boundary, and the corresponding
update equation is obtained from the magnetic field eval-
uated at two adjacent nodes, one inside free space and the
other inside the PML.

A similar procedure is applied to the case when PML
is perpendicular to a dielectric interface (e.g., the lateral
termination in microstrip problems). The main point of
departure in this situation is to ensure that the waves en-
counter the same exponential decay in PML on either side
of the interface. This is accomplished by a self-consistent
application of Snell’s law and PML matching condition [3].

2.3. Stability Criterion

An upper bound for At in terms of the spatial dis-
cretization parameters Az and Ay can be obtained from
the quadratic equation (19) by looking for oscillating wave-
like soultions in free space which make | £ |[= 1. Such
solutions lead to the well-known Courant-Levy-Friedrich
(CLF) stability criterion for two dimensions, given by

At < [(—A—l;>2+ (11@-)2}—1/2 (21)

However, because of disspation in the PML and the expo-
nential time-differencing employed, the characteristic dis-
persion equation (18) for a PML is rather complicated, and
it does not readily yield a CLF stability criterion akin to
(21). Although eq. (18) appears to be quartic upon first
glance, it can be simplified to a quadratic equation in £, and
using a similar procedure as that employed to derive the
CLF criterion (21) for free space, one obtains the stability
criterion for the PML, given by
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1t is seen that a higher time step can be chosen in the PML
when compared to free space. The additional time dura-
tion resulting from the conductivity terms may be referred
to as diffusion stability limit, in the sense that velocity of
propagation inside a PML is damped (or reduced) by the
conductive dissipation, similar to a diffusion process. The
resulting implication is that one could employ a wider spa-
tial step in the PML medium in comparison to the adjacent
free space, without affecting the stability. We are examining
this issue further using simulations with a non-uniform grid.
Certainly, a larger spatial step could have potential compu-
tational savings, as the PML itself comprises of several Yee
cells.

3. Results

We have solved (18) for the complex stability factor £
using Davidenko’s method [7], which is an analytical con-
tinuation of Newton Raphson’s method from a real domain
into the complex plane. Fig. 1 shows the magnitude of the
stability factor for the case of a plane wave incident on an
interface (perpendicular to z-direction) between free space
and a four-layer PML medium characterized by o, = 0,
oz(p) = om(p/8)", where p is the distance from the inter-
face to a point in the PML, § = 4Axz is the thickness of the
PML, and

O = ——ln[R(O)]n; “—gf. (23)
The lowest desirable reflection coefficient at the boundary,
R(0), is chosen as 0.01, nis chosen as 2, and, Az = Ay =5
cm, Al = 0.1 ns. The stability factor does not change
with frequency, but, it does vary slightly with the angle of
incidence, perhaps because the reflection varies a little with
this angle (see Table 1 in [1]). However, even in the worst
case of close to grazing incidence (¢ = 89°), | £ | is about
0.75, indicating that the solution is stable for all incidence
angles and frequencies.

Note that the time step A? is chosen according to the
Courant stability condition (21), and is identical in free
space and PML. However, because the diffusion stabil-
ity limit in (22) for exponentially differenced equations is
higher than the conventional Courant limit, it is possible to
choose a larger time step in the PML. We have computed
the amplification factor for several cases with At higher than
the conventional Courant limit, but lower than the diffusion
stability limit in (22), and found that | ¢ |<1.
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Figure 1: Stability factor at the interface between free space and

PML.

In order to validate the PML/FDTD implementation and
its effectiveness in microwave circuit simulation, we con-
sider a microstrip low-pass filter whose geometry is de-
scribed in [8]. This is a fairly high-Q filter and requires a
long simulation time. Thus, it provides a good check for the
stability of the PML algorithm. The computational domain
is discretized into 66 x 42 x 11 cells, each of size Az =
0.4064 mm, Ay = 0.4233 mm and Az = 0.265 mm. 3 cells
buffer is maintained between the edges of the circuit and
the PML boundary, whose thickness is 5 cells. 8000 time
steps, each of duration At = 0.441 ps, are employed. The
computed insertion loss of the filter, displayed in Fig. 2,
corroborates very well with the measurements reported in
[8]. No instability was observed in the time-domain field.
In comparison with [8], which employs Mur’s ABC and
the same cell size, we get better accuracy by using PML
ABC and 76% fewer cells. Although by no means is the
simulation exhaustive, it does provide good insight into the
stability, effectiveness (or accuracy in some sense) and com-
putational savings of Berenger’s PML absorbing boundary
condition for microwave circuit simulation using the FDTD
method.

4. Conclusions

The stability of Berenger’s PML algorithm for the re-
flectionless absorption of plane waves at the boundary of a
computational domain has been examined rigorously. It is
shown that the system of difference equations which gov-
ern the EM field in a PML medium, and at the interface
between free space and a PML medium, is numerically
stable irrespective of the angle of incidence and the fre-
quency. The PML/FDTD implementation has been vali-
dated by the efficient simulation of a microstrip filter with
a high Q. The transient response does not manifest any
instability over long computation times, as demonstrated
by good agreement of the frequency-domain S-parameters
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Figure 2: Insertion loss of the low-pass filter.

with measurements. The rigorous stability analysis proves
that Berenger’s PML boundary condition has significant po-
tential in reducing the computational demands of the FDTD
algorithm.
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