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Abstract: Berenger introduced the concept of a termi-

nating boundary known as perfectly matched layer (PML),

in which electromagnetic waves are absorbed withottt re-

flection, irrespective of frequency and angle of incidence

of the incoming wave. This absorbing boundary condition

promises to be very attractive for microwave CAD appli-

cations involving complex geometries such as high-density

microwave integrated circuits and electronic packages, be-

cause the computational domain can be significantly re-

duced. This paper presents, for the first time, a rigorous

analysis of the stability of the PML boundary condition ap-

plied to finite-difference time-domain (FDTD) simulation.

We discuss the FDTD simulation of a high-Q microstrip fil-

ter to show improvement in computational efficiency with-

out any manifestation of instability.

1. Introduction

Berenger [1] introduced the concept of a perfectly

matched layer (PML) to absorb without reflection incident

electromagnetic (EM) waves of arbitrary polarization, inci-

dence angle and frequency, at the walls of a computational

mesh. Berenger showed that such a layer can be designed

for a specified bound on the reflection coefficient at the

boundary, and applied the PML boundary condition to the

finite-difference time-domain (FDTD) simulation of two-

dimensional EM wave interaction in an open region. The

PML concept has been discussed further in [2], and applied

to the FDTD analysis of microstrip circuits in [3]. Mit-

tra and Pekel [2] consider the time-harmonic representation

of the fields in a PML medium and show that these fields

involve distributed dependent sources. This observation

raises the question of temporal stability of the difference

approximations of these fields, particularly in view of the

non-Maxwellian nature of the split-field representation in

Berenger’s original formulation.

Berenger’s PML absorbing boundary condition (ABC)

promises to be very attractive for EM simulations involving
complex geometries such as high-density microwave inte-

grated circuits and electronic packages, because the compu-

tational domain can be significantly reduced. This paper dis-

cusses, for the first time, the stability of the finite difference

m

approximations for the EM field in a computational mesh

terminated by Berenger’s PML ABC, and thus, provides :

valuable insight into its application to microwave circuit

analysis. In recent years, the FDTD method is being used

competitively with other EM simulation methods, partly

because of the advances in computer technology and the
improvement in accuracy caused by ABCS such as superab-

sorption [4]. However, all the ABCS prior to Berenger’s had

limitations such as numerical dispersion and restriction to

normal incidence, which precluded their general applicabil-

ity toward enhancement in accuracy of the FDTDI algorithm.

The advent of an ABC with residual reflection of the order

of -80 dB or less indicates that a comprehensive, yet accu-

rate, full-wave CAD tool, with practically no limitation on

the complexity of geometry and physical description of the

circuit or scatterer, is at hand.

The stability analysis presented in this paper follows

the classical von Neumann method for the stability of par-

tial differential equations. The eigenmode structure of the

difference approximations of Berenger’s split-field repre-

sentation in a PML is utilized to derive a transcendental

equation for the stability (or amplification) factor. The tran-

scendental equation is solved numerically and stability of

the tirne-dornain difference equations for the EM field in
a PML medium is established rigorously in terms of the

computational parameters such as angle of incidence, fre-

quency and layer conductivity. The stability of the EM field

approximations at a boundary between a PML medium and
free space is also investigated. The PML ABC is applied

to the FDTD analysis of a microstrip filter which involves

fairly long simulation times, and it is shown that an ac-

curate (in comparison with measurements), stalble solution

can be obtained by placing the PML boundary only a few

cells away from the element. Thus, the filter simulation also

demonstrates the computational savings made possible by

Berenger’s PML.
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2. Stability Analysis

2.1. PML Medium

The transverse electric (TE) field in a two-dimensional

PML medium can be obtained from [ 1]

(3)

(4)

where the couples (UZ, *) denote anisotropicOy) and (a:, au

electric and magnetic conductivities, respectively, of the

PML medium. The splitting of the longitudinal magnetic

field into two components as embodied in (1) – (4) is an

important starting point of Berenger’s formulation. The

stability of this system of equations is addressed next.

The equations above are central difference in space

and exponentially difference in time [5] to obtain the set

of difference equations given by
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The eigenmode of this system is given by damped wave-like

E:(i, j)

E;(i, j)

H&(i, j)

H&(i, j) 1=’ne-’’’li! (9)

where !R-yP= aP and %y~ = /3P. The attenuation and phase

constants-in the PML medium are given as

,& = ~cosd, & = ~sind (11)

where w is the angular frequency, c is the speed of light

in free space and # is the angle of incidence. The vector

on the right-hand side of eq. (9) is a constant eigenvector,

independent of time and space, and [ = ~(-yz, Yg) is a

complex number known as the amplification factor [6]. For

a stable solution, the magnitude of this factor must be

less than unity. After substituting the eigenvector equation

into the difference equations, the characteristic system given

by

[

‘q o /pY$L &pf?

o .@.& -&+
o -$-% [z o

&p- o 0 ‘a 1
is obtained, where q. = m, and

SC = sinh(yrAz/2) sinh(-yVAy/2)

Ax/2 ‘ ‘y = Ay/2
(13)

~z = 1 – e–O.Atlfo _ 1 _ ~–o:At/po— (14)

(c = ( _ e-O.AtJm ,cY ~ ( – e-g@t/~o (16]

The last equality in ( 14) and ( 15) follows from the matching

condition for the PML, given by [1]

0- 0“—— —
Co —/lJo” (17)

The characteristic system in (12) will have a solution
for the eigenvector only if the determinant of the matrix is

zero. Therefore.

‘{-}’+’{-}2-’’’J2=0’18’solutions of the form
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When the electric and magnetic conductivities vanish, (18)

correctly reduces to the characteristic determinant of central

difference equations for the field in free space:

{Ax (*)f(<– 1)2 + 4~ ~sin

+ 4’{%sin(w}2=0 ‘1’)

2.2. PML Free Space Boundary

A PML adjacent to free space has no conductivity com-

ponent tangential to the free space interface [1]. Assuming

an interface at z = xi = i.x, the characteristic system

can be obtained from (12) by replacing au ~ O, pu /uV -i

third and fourth entries in the second row to

1 – Auz

where
A = e–u.(i)At/co (20)

The node for Ev falls at the boundary, and the corresponding

update equation is obtained from the magnetic field eval-

uated at two adjacent nodes, one inside free space and the

other inside the PML.

A similar procedure is applied to the case when PML

is perpendicular to a dielectric interface (e.g., the lateral

termination in microstrip problems). The main point of

departure in this situation is to ensure that the waves en-

counter the same exponential decay in PML on either side

of the interface. This is accomplished by a self-consistent

application of Snell’s law and PML matching condition [3].

2.3. Stability Criterion

An upper bound for At in terms of the spatial dis-

cretization parameters Ax and Ay can be obtained from

the quadratic equation (19) by looking for oscillating wave-

like soultions in free space which make I $ 1= 1. Such

solutions lead to the well-known Courant-Levy-Friedrich

(CLF) stability criterion for two dimensions, given by

+(+)2+(-+)2]-’”(21,

However, because of dissipation in the PML and the expo-

nential time-differencing employed, the characteristic dis-

persion equation (18) for a PML is rather complicated, and

it does not readily yield a CLF stability criterion akin to

(21). Although eq. (18) appears to be quartic upon first

glance, it can be simplified to a quadratic equation in (, and

using a similar procedure as that employed to derive the

CLF criterion (21) for free space, one. obtains the stability
criterion for the PML, given by

‘Ats[(+)2+(+)21-”2

x[1+*{(=)2+(=”)2}1
(22)

It is seen that a higher time step can be chosen in the PML

when compared to free space. The additional time dura-

tion resulting from the conductivity terms may be referred

to as diffusion stability limit, in the sense that velocity of

propagation inside a PML is damped (or reduced) by the

conductive dissipation, similar to a diffusion process. The

resulting implication is that one could employ a wider spa-

tial step in the PML medium iin comparison to the adjacent

free space, without affecting the stability. We are examining

this issue further using simulations with a non-uniform grid.

Certainly, a larger spatial step could have potential compu-

tational savings, as the PML itself comprises of several Yee

cells.

3. Results

We have solved (18) for the complex stability factor (

using Davidenko’s method [7], which is an analytical con-

tinuation of Newton Raphson’s method from a real domain

into the complex plane. Fig. 1 shows the magnitude of the

stability factor for the case of a plane wave incident on an

interface (perpendicular to x-direction) between free space

and a four-layer PML medium characterized by CTg = O,

or(p) = cr~ (p/6)n, where p is the distance frolm the inter-

face to a point in the PML, 6 = 4.x is the thickness of the

PML, and

an = – ln[R(0)] ~~. (23)

The lowest desirable reflection coefficient at the boundary,

R(0), is chosen as 0.01, n is chosen as 2, and, .x = Ay = 5
cm, At = 0.1 ns. The stability factor does not change

with frequency, but, it does vary slightly with the angle of

incidence, perhaps because the reflection varies a little with

this angle (see Table 1 in [1]). However, even in the worst

case of close to grazing incidence (~ = 890), I~ I is about

0.75, indicating that the solution is stable for all incidence

angles and frequencies.

Note that the time step At is chosen according to the

Courant stability condition (21), and is identical in free

space and PML. However, because the diffusion stabil-

ity limit in (22) for exponentially difference equations is

higher than the conventional Courant limit, it is possible to

choose a larger time step in the PML. We have computed

the amplification factor for several cases with At higher than
the conventional Courant limit, but lower than the diffusion
stability limit in (22), and found that 1.&I< 1.
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Figure 1: Stability factor at the interface between free spaceand
PML.

In order to validate the PML/FDTD implementation and

its effectiveness in microwave circuit simulation, we con-

sider a microstrip low-pass filter whose geometry is de-

scribed in [8]. This is a fairly high-Q filter and requires a

long simulation time. Thus, it provides a good check for the

stability of the PML algorithm. The computational domain

is discretized into 66 x 42 x 11 cells, each of size Ax =

0.4064 mm, Ay = 0.4233 mm and Az = 0.265 mm. 3 cells

buffer is maintained between the edges of the circuit and

the PML boundzwy, whose thickness is 5 cells. 8000 time

steps, each of duration At = 0.441 ps, are employed. The

computed insertion loss of the filter, displayed in Fig. 2,
corroborates very well with the measurements reported in

[8], No instability was observed in the time-domain field.

In comparison with [8], which employs Mur’s ABC and

the same cell size, we get better accuracy by using PML

ABC and 76% fewer cells. Although by no means is the

simulation exhaustive, it does provide good insight into the

stability, effectiveness (or accuracy in some sense) and com-

putational savings of Berenger’s PML absorbing boundary

condition for microwave circuit simulation using the FDTD

method.

4. Conclusions

The stability of Berenger’s PML algorithm for the re-

flectionless absorption of plane waves at the boundary of a

computational domain has been examined rigorously. It is
shown that the system of difference equations which gov-

ern the EM field in a PML medium, and at the interface

between free space and a PML medium, is numerically

stable irrespective of the angle of incidence and the fre-
quency. The PML/FDTD implementation has been vali-

dated by the efficient simulation of a microstrip filter with
a high Q. The transient response does not manifest any

instability over long computation times, as demonstrated

by good agreement of the frequency-domain S-parameters
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Figure 2: Insertion loss of the low-pass filter.

with measurements. The rigorous stability analysis proves

that Berenger’s PML boundary condition has significant po-

tential in reducing the computational demands of the FDTD

algorithm.
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